Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2143229

ABSTRACT

We investigated specific humoral and T-cell responses in people living with HIV (PLWH) before (T0), after two (T1) and after six months (T2) from the third dose of the BNT162b2 vaccine. Healthy donors (HD) were enrolled. The specific humoral response was present in most PLWH already after the second dose, but the third dose increased both the rate of response and its magnitude. Collectively, no significant differences were found in the percentage of responding T-cells between PLWH and HD. At T0, stratifying PLWH according to CD4 cell count, a lower percentage of responding T-cells in <200 cells/µL subgroup compared to >200 cells/µL one was observed. At T1, this parameter was comparable between the two subgroups, and the same result was found at T2. However, the pattern of co-expression of IFNγ, IL2 and TNFα in PLWH was characterized by a higher expression of TNFα, independently of CD4 cell count, indicating a persistent immunological signature despite successful ART. mRNA vaccination elicited a specific response in most PLWH, although the cellular one seems qualitatively inferior compared to HD. Therefore, an understanding of the T-cell quality dynamic is needed to determine the best vaccination strategy and, in general, the capability of immune response in ART-treated PLWH.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , T-Lymphocytes , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral
2.
Front Immunol ; 13: 871592, 2022.
Article in English | MEDLINE | ID: covidwho-1809407

ABSTRACT

Background: CD163, a haptoglobin-hemoglobin scavenger receptor mostly expressed by monocytes and macrophages, is involved in the regulation of inflammatory processes. Following proteolytic cleavage after pro-inflammatory stimulation, CD163 is shed from the cell surface and its soluble form in plasma, sCD163, is a biomarker of monocyte/macrophage lineage activation.The assessment of sCD163 plasmatic levels in an early stage of the disease could have clinical utility in predicting the severity of COVID-19 pneumonia. The use of tocilizumab (monoclonal antibody anti-IL-6 receptor) in COVID-19 patients reduces lethality rate at 30 days. The aim of the study was to investigate the effect of tocilizumab on sCD163 plasmatic levels in a cohort of COVID-19 patients. Methods: In COVID-19 patients, on hospital admission (T0), after 7 days from hospitalization (T7) and after 45 days from discharge (T45) sCD163 plasmatic levels were evaluated, along with other laboratory parameters. COVID-19 patients were stratified into tocilizumab (TCZ) and non-tocilizumab (non-TCZ) groups. TCZ group was further divided into responder (R) and non-responder (NR) groups. Patients who died or required mechanical ventilation were defined as NR. As control group, healthy donors (HD) were enrolled. Results: Seventy COVID-19 patients and 47 HD were enrolled. At T0, sCD163 plasmatic levels were higher in COVID-19 patients compared to HD (p<0.0001) and the longitudinal evaluation showed a reduction in sCD163 plasmatic levels at T7 compared to T0 (p=0.0211). At T0, both TCZ and non-TCZ groups showed higher sCD163 plasmatic levels compared to HD (p<0.0001 and p=0.0147, respectively). At T7, the longitudinal evaluation showed a significant reduction in sCD163 plasmatic levels (p=0.0030) only in the TCZ group, reaching levels comparable to those of HD. Conversely, not statistically significance in non-TCZ group was observed and, at T7, a statistically significance was found comparing non-TCZ group to HD (p=0.0019). At T0, R and NR groups showed not statistically significance in sCD163 plasmatic levels and both groups showed higher levels compared to HD (p=0.0001 and p=0.0340, respectively). The longitudinal evaluation showed significant reductions in both groups (R: p=0.0356; NR: p=0.0273) independently of the outcome. After 45 days of follow-up sCD163 plasmatic levels remain stable. Conclusion: sCD163 plasmatic levels are increased in COVID-19 pneumonia and is efficiently down-regulated by tocilizumab treatment regardless of the clinical outcome.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Humans , Monocytes
3.
Clin Immunol ; 222: 108630, 2021 01.
Article in English | MEDLINE | ID: covidwho-921852

ABSTRACT

BACKGROUND: NK cells seem to be mainly involved in COVID-19 pneumonia. Little is known about NKT cells which represent a bridge between innate and adaptive immunity. METHODS: We characterized peripheral blood T, NK and NKT cells in 45 patients with COVID-19 pneumonia (COVID-19 subjects) and 19 healthy donors (HDs). According to the severity of the disease, we stratified COVID-19 subjects into severe and non-severe groups. RESULTS: Compared to HDs, COVID-19 subjects showed higher percentages of NK CD57+ and CD56dim NK cells and lower percentages of NKT and CD56bright cells. In the severe group we found a significantly lower percentage of NKT cells. In a multiple logistic regression analysis, NKT cell was independently associated with the severity of the disease. CONCLUSIONS: The low percentage of NKT cells in peripheral blood of COVID-19 subjects and the independent association with the severity of the disease suggests a potential role of this subset.


Subject(s)
COVID-19/pathology , Natural Killer T-Cells/physiology , SARS-CoV-2 , Aged , Aged, 80 and over , Antigens, CD/genetics , Antigens, CD/metabolism , Female , Gene Expression Regulation , Humans , Male , Middle Aged , Natural Killer T-Cells/classification , Natural Killer T-Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL